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Computing the Smith Normal Form of a Matrix¥*

Jo Ann licwell

1. Introduction

The reduction of a matrix to a normal form enables us to
study the matrix in its simplest and most convenient shape, and
to morc immediately relate the thecory of matrices to scientific
applications. We study in this paper an algorithm for computing
syrhbolically the Smith normal form of a matrix. First, we in-
troduce some hasic concepts. Further background is found in
Gantmacher [1960, pp.130-174] or Turnbull and Aitken [1961,
pPp.21-28].

Let A(X) be an mxn matrix having polynomial elcements with
cocfficients over a ficld ¥, We can write

A = A AR eoa kel

+...+ AO,
where the Ai arc mxn matrices with elements over F, A()) is
called a A-matrix.

Every A-matrix of rauk r can be rcduccd by elementary
transformations (rational in the field of clements of A(X)) to a

diagonal form containing exactly r nonzero clements,

B(A) = P(2) A(A) Q(X)
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P(A) and Q(}) are square A-matrices with tnonzero determindants in-
dependent of A, Each Ei(l) is a monic polynomial in A such that
Hi(A) d’'vides Ei+](k). The polynomials Ei(A) arc called the

invariant f{actors of A(A). This diagonal form is known as the

Smith normal form for equivalent A-matrices.

2. Algorithm for Computing the Smith Normal Form
Hercafter we shall assume that A is an mxn A-matrix and shall

omit the (A). ROW and COLUMN are d¢scribed below. For rolated
algorithms and discussion scc Bradley |1971].
SMITH:
Step 1: t « min(n,n)
Step 2: [Construct diagonal form row by row.]

For i=1,..., t-1 do steps 3-8
Step 3: [Check for a zero row.]

While row i of A is O do

If i<t-1 then i<i+]

else go to 9

end
Step 4: For j = i+l ,..., m do
I{ remainder (“j ’]- ,Ai ,i)#() do
ROW(A,i)
g0 to Step 5
end
end

Step 5 For juwi+l ,..., n do

If remainder (Ai,j

COLUMN (A, i)

WAy §)F0 do

go to step 4
end

end
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Step 6: [Subtract multiples of column i from other columns.]
For j = i+l ,..., n do
For k=1 ,..., m do

Ak,i M, o Ay 7R A

end
end
]
Step 8: [Make pivctal elernceny monic.])
. . s . . is leading "fici
Ai,1 - A1,1/1dC£(A1,1) (1dcf is lcading cocfficient)
Step 9: |Make last pivotal clement monic.]

At,t - At,t/]dCf(Ar,t)

Step 10: If m < n then do

For j = m+l ,..., n A .« 0
end

Step 11: 1{ n < m then do
For j = ntl ,..., m A
end
Step 12 Yori=1,..., t -1
For kK = i+1 ,..., t
If rcmainder'(Ak’k,Ai,i) # 0 then do

g « ged (A 1,A; ;)

Mok ¢ AL A /e
Aj,i © 8
end
end
end

Using the function ROW we perfoem elementary column opera-

tions on the ith, (i+l1)th ,..., nth column of A until l\j i
?



divides Ai 5 j = i+l,...,n. Rows i tom of A are afflfected by
»

the transformations.

ROW :
Step 1: [Make elements in row i monic.]
for 2 =i ,..., n do
For j =i ,..., m Aj,g « Aj’g/ldcf(Ai’L)
end
Step 2: [Find the elcment of lowest degree in row i.]
Set k to the column number such that
deg(Ai’k) < dog(Ai'j) sJ=il,c0ayn,
and Ai,k # 0.
Step 3: [Tnterchange columns k and i, if k#i.]
For j =1 ,..0, m Exchange Aj,k and Aj,i

Step 4: Calculate X5 such that

8C(l(Ai,i’-«i’i+1 F B ] Ai’n) [
xiAi,i X4 Ai,i+] Toeet Xy Ai,n
Step 5 [Steps 5-8 arce special cases.]

For k =1 ,..., n do
If Xp = 1 or Ai,k = 0 then po to step 12
end
Step 6 For k =1 ,..., ndn
IT X\ = -1 then do
FOT j = i pae ey m Aj’k «- -A-
go to step 12
end
end



Step 7:

Step 8:

Step 9

n
iy

Step 11:

Step 12:

p 10:
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For k = i+1 ,..., n do

If Ai,i dividcs Ai,k then do

X3 v X5t ALk MM
£0 to step 12
end

end
For k=1 ,..., n do
If X) = 0 then do

d « Ay 'k/gcd (Ai

i ?

For j =1 ,..., n X. « (]-d)xj

go to step 12
end
end

Calculatc y; and Ys such that

g n ng('Ai,j,Ai,i"':l) = )'lAi,i"‘)'zAi,i"'l

213 ¢ Ay L0178
/8

22 * ALi
[Put ged in Aj’j and 0 in Ai,i+1']

Yor j =i ,..., m do

Eoyr Ay i * Y2 A

< 21 A-

A ini

j’]."'] + 22.‘\

Aj’j < d

J,i+l

end

g£o to step 4

[Replace pivotal element with ged. ]
For j =i ,..., n (i # k) do

For 2 =i ,..., m An,k « Az,k + X. A
ens
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Step 13: [Interchange columns i and k.|

For j =1 ,..., m Tnterchange Aj’i and Aj,k

COLUMN(A,i) is the seme as ROW(A),i).
A key operation encountcred in this reduction is the computa-

tion of multipliers X] see-s X such that
n n

Z a;x; = gcd(a1 sy an).

i=1
For example, sce steps 4 and 9 of ROW. Large multipliers Xy
lead to large interr.adiate expression growth. In the following
section we examine alpgorithms for reducing the size of the
multipliers.
3. The Grcatest Common Divisor Algorithm
The following mrterial is included in Howell [1976]. We

compute the gcd of n polynomials in pairwise fashion. That is,
if a;,8, ..., @ are pol-nomials, we compute the pcd as follows:

g gcd(al,nz)

8, < gcdlg;.a;)

gn-l * gcd(gn_z,an)

licre, g is gcd(al. Ay yeaes a“). We can easily show that jif

n-1
we order the polynomials Ay se.0y A SO that the degree of a; is

largest and the degrec of a is smallest, then the bound on

S dcg(xi), the sum of the degrees of the multipliers, is smaller
1=,

than with tlie vpposite ordering, that is, the smallest to largest

ordering. Also the bound on max dcg(xi) is smaller.
i

If, in addition to computing the £ above, we save the multi-
plicrs, Wi and Y;41 O cach step so that g; = gcd(gi_J,ni+]) =

Wieg P31 Y Y541 341 then we can compute the multiplicers oy so
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that gcd(:n1 pasey a“) = 2jdy *...*+ zoa as follows:

2 = ! m
yn “n wn

2 % Yi Vi
i-n-l |-|-.2

Wit oWy Wiy

= 1

217 w2
A smaller bound for the degrces of the multipliers is obtained
when we modify the algorithm as follows:

S M A quotient(yn/vn)

1 - . 3 v
wesw, - U quotlcnt()"/vn)

Z =T ¥; Wi+ " Vy ot quoticm(zi w§+]/vi)\

L i-n'l pue )
! o W 1 - . L. P ’

wiomowe Wi, o-ou, quot:cnt(_ihi+1/\i) —f

where u, = -a./p, 4 and vy = B; 5/R5

A related di:cussion is given in Bradley [1970].

These algorithms have heen coded in ALTRAN.
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